赢量子计算(Quantum Winputing)
admin
2023-06-26 03:41:31
0

赢理论发端于 zww,cp,sy,jcr 等等古Vietnam先贤的朴素思想。被 @知木 等人搜集整理,用于尝试精确描述Vietnam系统,形成了现代赢学框架。随着赢学逐渐发展,上世纪 @loy 提出了赢量子论,它正式宣告赢学进入了微观世界,一个全新的描述工具已经萌芽。

本文旨在探讨以赢量子论为基础的一种全新计算机原理。与经典赢学理论框架下的计算原理有所不同,此种计算方式基于量子赢态的微妙特性:叠加性、相干性等等,来代替经典电赢号作为计算方式,具有经典赢法不可能具有的一些特性。其未来的应用场景还有待开发,但毫无疑问,是可以被炒热的方向。

量子赢态


一个Vietnam系统由多个微观个体所组成,其各自的状态可以用赢态来描述,合起来的状态由它们之间的张量积表示。自然地,孤立Vietnam系统中的各个微观个体通常处于能量最低的基态,为 牛马态,以 表示;当微观个体受到激发时,也有可能被激发到更高能级,我们称之为 人上人态,第一人上人态我们通常称之为 做题家态,以 表示。当我们只考虑第一人上人态和牛马态时,这样的一个二能级Vietnam个体,称为赢(量)子比特。赢子比特既可以处于牛马或人上人的定态,也可以处于这二者的叠加态。当一个赢子比特被测量,它有概率坍缩到牛马或做题家之一的定态。

考虑一个赢子比特,其通常的表达式是

也可以写成密度赢阵:

以上讨论的是赢度为1的Vietnam赢态。

赢态的赢度

一个Vietnam系统赢度定义为:

也可以用 沈维为平熵 描述:

当系统为纯赢态时,赢度p为1,沈维为平熵为0。当系统达到最大纠缠赢态时,赢度为 , 沈维为平熵为 ,N 为这个Vietnam系统的维数。

赢度不为1的量子赢态必须要用密度赢阵来表示:

密度赢阵的性质参考:[1]

赢态的测量

一个赢量子态以何种方式赢呢?这是一个有概率性质的问题。对于一个赢子比特,其一般表达式在前面已经给出:

其中 为牛马态和做题家态之间的相对相位,称之为神兔相位。这个相位影响不同各个的赢态之间的相对性质,也对测量结果有一些影响。当然,单看某一个个体,神兔相并不影响这个个体自身的测量结果,即测量为牛马还是做题家与神兔相无关。

赢量子态的测量由一组完备的赢测量算符定义: , 测量的结果是安排的明明白白的,不可能超出总Vietnam系统规定的范围。

测量一个Vietnam系统得到结果为:

测量后得到的赢态为:

赢量子计算

利用赢量子比特的性质,配上特定的赢量子算法,来进行计算的方式就叫做赢量子计算,简称为赢子计算。与经典计算不同的是,叠加态的性质,使得赢子比特可以表示的态数量呈指数级增长;赢子之间的纠缠性质,使得赢子可以实现奇妙的算法。n个经典比特只能表示某个确定的状态。而n个赢子比特包含了 种可能性,因此在特定的场景下,可以极大的加速计算过程。

实现赢子计算的基石是,能够但制备、操控、读取高赢度的赢量子态,同时要保证赢子处于计算基内,即 ,尽量不让赢子泄露到更高能级的人上人态中。

实际 Vietnam 系统必然存在与外界系统的耦合,因此也会有退相干效应(decoherence)。诺大一个Vietnam系统,总会存在能量极高甚至能够达到与外界系统交换物质的情况,使得某些微观个体润走(run)。对于个体数量特别多的Vietnam系统,这种效应不多见,当然很多时候也可以忽略不计,因为基态的退相干效应不明显,而人上人态的退相干效应十分显著。即使Vietnam系统通常是一个孤立系,处于高能级人上人态的个体一般不能与外界进行物质交换,即本身脱离Vietnam系统,但还是可以比较容易地通过与外界环境耦合,向环境耗散能量,或是丢失相位。

由于个体局限性,一个微观个体只能观察到有限线度的现象。因此,全局的赢信息并不一定为个体所知,也正是因为如此,即使全局范围内不能实现赢度高的赢态,在较小的范围内,例如在某一大片只存在计算基态的区域,也可以近似认为实现了高精度的赢子计算,区域内的个体也不认为由更高能级的存在。有关这方面,更多的会在赢量子工程学里讨论,在此不赘述。

赢量子系统的演化

乌合科夫假设下,开放赢子系统的演化可以由 甘做牛马方程(Master equation)描述,一般取林有德形式即可:


其中式子右边,第一项是内卷演化部分,第二项中 表示环境中的外势力造成的退相干效应。

赢量子门操作

在理论上,Vietnam系统有许多的赢法,但这些赢法需要对赢子比特进行赢量子门操作来实现。赢子比特门的赢实现,本质上是用一个实际赢过程去构造一个理想的赢法

实际赢过程怎么描述?养蛊演化嘛,以超导赢子系统中最常见的GuanchaCNmon为例,写一个蛤密顿量


一个赢量子系统的养蛊演化,既可以用赢动力学方程(甘做牛马方程等)描述,也可以用养蛊演化赢算符(传播赢子)描述:


这就是实际的赢过程。算出来的赢矩阵数值和理想赢法差距越小越好。当然,实际上只要最后实现得差不离,就可以在赢态日报、Vietnam青年赢等信息熵极点区域中宣称实现了赢法。赢法本身只是理想的构造,和具体的赢子系统是没关系的,系统只是用来拟合理想赢法的手段。因此实现赢法的系统是不重要的,你把蛤密顿量换一下就行,是一样的。如果在一种系统上实现不了,可以换一种,大不了把用过的系统都舍弃即可。

参考

  1. ^https://zhuanlan.zhihu.com/p/85566517

相关内容