在上一章
中,我们介绍了云计算的相关概念,在这一章里,我们来介绍一下物联网的概念,及其大数据,云计算和物联网三者的区别与联系。
物联网是物物相连的互联网,是互联网的延伸,它利用局部网络或互联网等通信技术把传感器、控制器、机器、人员和物等通过新的方式连在一起,形成人与物、物与物相连,实现信息化和远程管理控制。
从技术架构上来看,物联网可分为四层(见图1-9):感知层、网络层、处理层和应用层。每层的具体功能如表1-8所示
我们用智能公交这个案例来加深对物联网概念的理解。目前,很多城市居民的智能手机中都安装了“掌上公交”APP,可以用手机随时随地查询每辆公交车的当前到达位置信息,这就是一种非常典型的物联网应用。在智能公交应用中,每辆公交车都安装了GPS定位系统和3G/4G网络传输模块,在车辆行驶过程中,GPS定位系统会实时采集公交车当前到达位置信息,并通过车上的3G/4G网络传输模块发送给车辆附近的移动通信基站,经由电信运营商的3G/4G移动通信网络传送到智能公交指挥调度中心的数据处理平台,平台再把公交车位置数据发送给智能手机用户,用户的“掌上公交”软件就会显示出公交车的当前位置信息。这个应用实现了“物与物的相连”,即把公交车和手机这两个物体连接在一起,让手机可以实时获得公交车的位置信息,进一步讲,实际上也实现了“物和人的连接”,让手机用户可以实时获得公交车位置信息。在这个应用中,安装在公交车上的GPS定位设备就属于物联网的感知层;安装在公交车上的3G/4G网络传输模块以及电信运营商的3G/4G移动通信网络,属于物联网的网络层;智能公交指挥调度中心的数据处理平台属于物联网的处理层;智能手机上安装的“掌上公交”APP,属于物联网的应用层。
物联网是物与物相连的网络,通过为物体加装二维码、RFID标签、传感器等,就可以实现物体身份唯一标识和各种信息的采集,再结合各种类型网络连接,就可以实现人和物、物和物之间的信息交换。因此,物联网中的关键技术包括识别和感知技术(二维码、RFID、传感器等)、网络与通信技术、数据挖掘与融合技术等。
(1)识别和感知技术
二维码是物联网中一种很重要的自动识别技术,是在一维条码基础上扩展出来的条码技术。二维码包括堆叠式/行排式二维码和矩阵式二维码,后者较为常见。如图1-10所示,矩阵式二维码在一个矩形空间中通过黑、白像素在矩阵中的不同分布进行编码。在矩阵相应元素位置上,用点(方点、圆点或其他形状)的出现表示二进制“1”,点的不出现表示二进制的“0”,点的排列组合确定了矩阵式二维条码所代表的意义。二维码具有信息容量大、编码范围广、容错能力强、译码可靠性高、成本低易制作等良好特性,已经得到了广泛的应用。
RFID(Radio Frequency Identification)技术用于静止或移动物体的无接触自动识别,具有全天候、无接触、可同时实现多个物体自动识别等特点。RFID技术在生产和生活中得到了广泛的应用,大大推动了物联网的发展,我们平时使用的公交卡、门禁卡、校园卡等都嵌入了RFID芯片,可以实现迅速、便捷的数据交换。从结构上讲,RFID是一种简单的无线通信系统,由RFID读写器和RFID标签两个部分组成。RFID标签是由天线、耦合元件、芯片组成的,是一个能够传输信息、回复信息的电子模块。RFID读写器是由天线、耦合元件、芯片组成的,用来读取(或者有时也可以写入)RFID标签中的信息。RFID使用RFID读写器及可附着于目标物的RFID标签,利用频率信号将信息由RFID标签传送至RFID读写器。以公交卡为例,市民持有的公交卡就是一个RFID标签(见图1-11),公交车上安装的刷卡设备就是RFID读写器,当我们执行刷卡动作时,就完成了一次RFID标签和RFID读写器之间的非接触式通信和数据交换。
传感器是一种能感受规定的被测量件并按照一定的规律(数学函数法则)转换成可用信号的器件或装置,具有微型化、数字化、智能化、网络化等特点。人类需要借助于耳朵、鼻子、眼睛等感觉器官感受外部物理世界,类似地,物联网也需要借助于传感器实现对物理世界的感知。物联网中常见的传感器类型有光敏传感器、声敏传感器、气敏传感器、化学传感器、压敏传感器、温敏传感器、流体传感器等(见图1-12),可以用来模仿人类的视觉、听觉、嗅觉、味觉和触觉。
(2)网络与通信技术
物联网中的网络与通信技术包括短距离无线通信技术和远程通信技术。短距离无线通信技术包括Zigbee、NFC、蓝牙、Wi-Fi、RFID等。远程通信技术包括互联网、2G/3G/4G移动通信网络、卫星通信网络等。
(3)数据挖掘与融合技术
物联网中存在大量数据来源、各种异构网络和不同类型系统,如此大量的不同类型数据,如何实现有效整合、处理和挖掘,是物联网处理层需要解决的关键技术问题。今天,云计算和大数据技术的出现,为物联网数据存储、处理和分析提供了强大的技术支撑,海量物联网数据可以借助于庞大的云计算基础设施实现廉价存储,利用大数据技术实现快速处理和分析,满足各种实际应用需求。
物联网已经广泛应用于智能交通、智慧医疗、智能家居、环保监测、智能安防、智能物流、智能电网、智慧农业、智能工业等领域,对国民经济与社会发展起到了重要的推动作用,具体如下。
完整的物联网产业链主要包括核心感应器件提供商、感知层末端设备提供商、网络提供商、软件与行业解决方案提供商、系统集成商、运营及服务提供商等环节 具体如下。
云计算、大数据和物联网代表了IT领域最新的技术发展趋势,三者既有区别又有联系。云计算最初主要包含了两类含义:一类是以谷歌的GFS和MapReduce为代表的大规模分布式并行计算技术;另一类是以亚马逊的虚拟机和对象存储为代表的“按需租用”的商业模式。但是,随着大数据概念的提出,云计算中的分布式计算技术开始更多地被列入大数据技术,而人们提到云计算时,更多指的是底层基础IT资源的整合优化以及以服务的方式提供IT资源的商业模式(如IaaS、PaaS、SaaS)。从云计算和大数据概念的诞生到现在,二者之间的关系非常微妙,既密不可分,又千差万别。因此,我们不能把云计算和大数据割裂开来作为截然不同的两类技术来看待。此外,物联网也是和云计算、大数据相伴相生的技术。
下面总结一下三者的联系与区别
第一,大数据、云计算和物联网的区别。大数据侧重于对海量数据的存储、处理与分析,从海量数据中发现价值,服务于生产和生活;云计算本质上旨在整合和优化各种IT资源并通过网络以服务的方式,廉价地提供给用户;物联网的发展目标是实现物物相连,应用创新是物联网发展的核心。
第二,大数据、云计算和物联网的联系。从整体上看,大数据、云计算和物联网这三者是相辅相成的。大数据根植于云计算,大数据分析的很多技术都来自于云计算,云计算的分布式数据存储和管理系统(包括分布式文件系统和分布式数据库系统)提供了海量数据的存储和管理能力,分布式并行处理框架MapReduce提供了海量数据分析能力,没有这些云计算技术作为支撑,大数据分析就无从谈起。反之,大数据为云计算提供了“用武之地”,没有大数据这个“练兵场”,云计算技术再先进,也不能发挥它的应用价值。物联网的传感器源源不断产生的大量数据,构成了大数据的重要数据来源,没有物联网的飞速发展,就不会带来数据产生方式的变革,即由人工产生阶段转向自动产生阶段,大数据时代也不会这么快就到来。同时,物联网需要借助于云计算和大数据技术,实现物联网大数据的存储、分析和处理。
可以说,云计算、大数据和物联网三者已经彼此渗透、相互融合,在很多应用场合都可以同时看到三者的身影。在未来,三者会继续相互促进、相互影响,更好地服务于社会生产和生活的各个领域。
再参考下图
从这幅图中我们可以看出:
参考资料:
1、林子雨老师的《大数据技术原理与应用》