金刚石量子计算体系简述 1:背景、原理&简介
admin
2023-08-01 16:00:44
0

1 量子计算发展现状

近年来量子技术方兴未艾,人类正站在下一代量子革命的门槛上,量子力学正在催生变革性技术。量子力学自1900年诞生以来催生了许多重大发明——原子弹、激光、晶体管、核磁共振、全球卫星定位等。带来这些成果的“第一次量子革命”改变了世界面貌,成为社会跨越发展的基石和动力。




量子技术引领社会发展

2014年,英国《自然》杂志吹响“第二次量子革命”的号角。以量子信息技术为代表的量子调控,是量子力学的最新发展,带来了“二次革命”。这是一次巨大的飞跃,人类对量子世界的探索已从单纯“探测时代”走向主动“调控时代”,将在量子计算、量子通信、量子网络、量子仿真等领域实现突破,成为解决人类对能源、环境、信息等需求的重要手段。

2 量子计算发展规划

2018年9月,美国发布了量子信息发展国家战略书,特别强调了量子技术和量子科技在国家战略中的重要性。欧盟从2018年开始,投入10亿欧元实施“量子旗舰”计划。英国在牛津大学等高校建立量子研究中心,投入约2.5亿美元培养人才。




量子技术相关高新技术企业

我国也在《“十三五”国家科技创新规划》中强调了量子技术发展的重要性,各大高校、科研院所不断加大相关投入,高新技术企业也纷纷加入和布局量子技术产业。

3 量子计算教育现状




量子力学理论

要成为量子技术科学强国绝不是一代人的事,这离不开每一代人的努力,因此量子技术人才的教育和培养十分重要。与量子技术快速发展不相适应的是,量子技术从业人员严重缺乏,工程技术人员对量子技术的理解不够深入、实操能力不足,这些已成为限制该技术发展和应用的严重瓶颈。

人才的匮乏源于教育的缺失,虽然目前很多高校开设了量子力学相关课程,但是现有的课程和教材从思维模式和体系结构上,大多侧重讲述物理原理和基础方案的验证性实验,缺乏类似工科专业教学的案例、教材和实验资源。而量子力学的研究和教育,离不开量子理论研究和实验研究的紧密结合。推进量子力学学科建设,完善和创新学科教学内容、教学方法、教学手段,不仅符合我国建设量子技术强国的国家需求,还能解决高校量子技术相关应用型人才培养的实际问题。

4 金刚石量子计算体系介绍




NV色心原子结构和室温下的能级结构

金刚石氮-空位(NV)色心是指金刚石中的一种特殊的发光点缺陷,由一个氮原子取代碳原子并在临近形成一个空穴,是众多顺磁性杂质中的一种(如上图所示)。NV色心的电子基态是一种自旋三重态系统,且具有易于初始化、易于读取、易于操控、相干时间长、常温操作等优点, 是一种十分具有潜力的量子计算系统,同时NV色心也可作为纳米尺寸的传感器,用于磁场、电场、温度等物理量的测量。

上图是室温下金刚石NV色心的能级结构。NV色心的基态为自旋三重态,三重态基态与激发态间跃迁相应的零声子线为637 nm,红色区域为声子边带。基态的自旋三重态(|ms = 0,|ms = -1,|ms = 1)中,|ms = -1和|ms = 1在无磁场时是简并的,它们与|ms = 0态之间的能隙(零场劈裂)对应微波频率为2.87 GHz。可利用NV色心的自旋三重态作为量子比特系统。

有了良好的量子比特系统,我们还需要对NV色心自旋态进行初始化、操控和读出,即实现量子比特基准态的制备、量子逻辑门操作和量子比特的测量,以满足DiVincenzo 判据对量子计算体系的物理要求。

5 量子比特基准态制备

量子比特基准态的制备原理如下:首先532 nm 的激光激发基态电子,由于电子跃迁是电偶极跃迁与电子自旋无关,所以跃迁前后的自旋是守恒的。|ms = 0 的基态电子到|ms = 0 的声子边带,而|ms = ±1 的基态电子到|ms = ±1 的声子边带。之后|ms = 0的电子绝大多数都直接跃迁到基态辐射荧光,而|ms = ±1的电子则有一部分直接跃迁到基态辐射荧光,而另一部分通过无辐射跃迁到单重态再到三重态的|ms = 0 态(系间串跃过程)。

经过多个周期之后,基态|ms = ±1 上的布居度会越少越少,而|ms = 0 上的布居度会越来越多。这相当于,在激光的照射下,布居度从|ms = ±1 转移到了|ms = 0,从而实现了自旋极化。室温下NV 色心电子自旋的极化率可达95%以上。

6 量子逻辑门操作

量子逻辑门操作,即对NV色心自旋态的操控,使用的是自旋磁共振技术(如下图所示)。在外加磁场作用下,通过施加与拉莫进动频率一致的微波,利用微波场与自旋的相互作用,来调控自旋态的演化




自旋磁共振原理示意图

首先打开激光,将NV色心自旋态初始化到|ms = 0 态,然后关闭激光,打开微波。微波脉冲的频率等于共振频率,最后再施加激光,将NV色心自旋态读出。施加的微波脉冲宽度不同,自旋演化的状态就不同。将微波脉冲宽度与荧光计数对应起来,就可以得到拉比振荡的曲线。实现了拉比振荡,即说明实现了对NV色心自旋的相干操控,量子比特在|ms = 0 态和|ms = 1 态|之间振荡。共振驱动的情况下,当ω1t = π 时,量子比特从|ms = 0 态完全转到了|ms = 1 态,即实现了一个非门操作,这个脉冲也叫π脉冲。当ω1t = π/2时,我们得到|ms = 0态和|ms = 1的叠加态,即 |0 →(|0 +i|1)/√2 。这是量子计算中非常重要的逻辑门,这个脉冲也叫π/2脉冲。

7 量子比特测量

量子比特的测量,即对NV色心自旋态的读出原理如下:如果我们选取基态的|ms = 0 和|ms = 1 作为量子比特,NV 色心的自旋极化就对应于将量子比特的初态极化到|0 态。由于|ms = ±1态有更大的概率通过无辐射跃迁,回到基态。所以|ms = 0 态的荧光比|ms = ±1 态的荧光强度大,实验上得出约大20-40%。

根据|ms = 0态和|ms = ±1对应荧光强度的差别,就可以区分NV 色心的自旋态,即实现对自旋量子比特状态的读出。由于单次实验得到的|ms = 0 态和|ms = ±1 的荧光强度并不明显,室温下对NV色心电子自旋量子比特的测量一般为多次实验重复测量,测得的结果为某个观测量(如|ms = 0 ms = 0|)的平均值。

说明:该系列文章中描述的相关功能均可通过国仪量子金刚石量子计算教学机实现。

相关内容