本文为AI入门提供了一个简易的学习路线,并提供了代码和数据集下载。
一、前言
AI以及机器学习入门,初学者遇到的问题非常多,但最大的问题就是:
资料太多!!!看不完!!!不知道如何取舍!!!人的精力有限!!!
我结合已经发过的文章,以及自己的学习过程,整理出一个AI的入门路线,并整合到一个github仓库,所有代码和数据集都提供了下载方式。
本路线适合本科、硕士以及刚接触机器学习的博士。
根据这个github仓库学完以后,就基本入门了。
入门以后,遇到问题能上网搜索解决了,也知道接下来应该学什么。
二、学习路线的github
该仓库由我创建,希望能帮助机器学习初学者入门,帮助学习者更好地成长。仓库一部分内容由我编写和整理,另一部分由其他公益组织创作。
仓库链接:
https://github.com/fengdu78/Data-Science-Notes
三、仓库目录及概述
数学基础
python基础
numpy基础
pandas基础
scipy基础
数据可视化基础
scikit-learn基础
机器学习入门
深度学习入门
特征工程入门
四、学习路线说明
这个目录其实是一个学习路线:
0——>1——>2——>3——>4——>5——>6——>7——>8——>9
1-5是个整体,6和7的顺序可以交换也可以同时学习,8属于选学部分(深度学习),9放在最后学习。
五、学习路线和内容
第一部分,数学基础学习:
目录名称:0.math
数学基础:数学基础内容太多,很容易把人劝退,其实先把高等数学、概率论与数理统计和线性代数这三门课学熟了,大部分机器学习问题是能解决的。数学基础部分我放了三个资料。
第一个是当时考研和考博士复习的。数学基础,我把机器学习的部分,提炼出来。
第二、三个是今年刚翻译的CS229的线性代数和概率论,这部分是斯坦福所有人工智能有关的课程的数学基础复习材料,非常实用。
这部分内容曾经有文章介绍(查看文章)
第二部分,python学习
目录名称:1.python-basic
python基础:这里有个代码练习:两天入门python
目录名称: 2.numpy
numpy基础:这里有2个代码练习
目录名称: 3.pandas
pandas基础:这里有3个代码练习
目录名称: 4.scipy
目录名称: 5.data-visualization
数据可视化基础:这里有2个代码练习
第三部分,机器学习基础
目录名称:6.scikit-learn
scikit-learn基础:PyParis 2018: Machine learning using scikit-learn的代码翻译(截图如下:)
目录名称:7.machine-learning
机器学习入门,推荐4份教程,着重推荐1、2部分。
内容介绍(点击查看文章)
黄海广:吴恩达老师的机器学习和深度学习笔记更新了!(附PDF下载)
内容介绍(点击查看文章)
内容介绍(点击查看文章)
内容介绍(点击查看文章)
目录名称:8.deep-learning
深度学习入门,推荐3份教程
内容介绍(点击查看文章)
内容介绍(点击查看文章)
内容介绍(点击查看文章)
目录名称:9.feature-engineering
特征工程入门,这个是项目实战部分。
内容介绍(点击查看文章)
总结
本文提供了适合初学者入门AI的路线及资料下载,以上内容都整合到一个仓库:
仓库链接:
https://github.com/fengdu78/Data-Science-Notes
上一篇:人工智能的全面科普
下一篇:人工智能的发展带来哪些利与弊?