2018年是新技术爆发年,大数据、区块链、人工智能等行业飞速发展,渗透到我们生活的方方面面。
2018年,新开设“数据科学与大数据技术”专业高校数量达250所。
《华尔街日报》称:数据已经成为一种新的经济资产类别,就像黄金和货币一样!鉴于大数据巨大的商业价值,大数据专家在企业非常受重视。
在大数据行业内生存的时间越久,其经验也会越得到肯定,这也是大多数资深IT人士猜测大数据或将带来50、60岁的“老”专家的原因。
面对如此光明而诱人的前景,很多IT从业者早已向大数据转型。
究竟什么是大数据呢?
麦肯锡全球研究所给出了一个具象的定义:
一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合。
具有海量的数据规模(vomule)、快速的数据流转(velocity)、多样的数据(variety)三大特征。
大数据应用方向
方向一:Hadoop(在分布式服务器集群上存储海量数据并运行分布式分析应用的一种方法)大数据开发方向;
方向二:数据挖掘、数据分析&机器学习方向;
方向三:大数据运维&云计算方向。
三个方向中,大数据开发是基础。以Hadoop开发工程师为例,Hadoop入门月薪已经达到了 8K 以上,工作1年月薪可达到 1.2W 以上,具有2-3年工作经验的Hadoop人才年薪可以达到 30万-50万。
大数据是未来最有前景的行业
数据分析师为什会被认为是最有发展前景的呢?
这是一个朝阳行业,现在正处于上升阶段,任何公司的核心都离不开数据,数据分析师也是公司的重要决策人员。选择大数据专业,是你正确的决定。
都有哪些对口的工作职位呢?下面小编为大家介绍一下:
大数据开发方向;大数据工程师,大数据开发工程师,大数据维护工程师,大数据研发工程师,大数据架构师等;
数据挖掘,数据分析和机器学习方向;大数据分析师,大数据高级工程师,大数据分析师专家,大数据挖掘师,大数据算法师等;
大数据运维和云计算方向;大数据运维工程师等。
大数据人才需求和现状
目前的两个主要趋势是,大数据领域从业人员的薪金将继续增长,大数据人才供不应求。麦肯锡全球研究院的研究预测在未来6年,同时具备通过分析大数据并为企业做出有效决策的数据的管理人员和分析师也有150万人的缺口。
目前的大数据人才供给指数仅为0.05,属于高度稀缺。跳槽速度也最快,平均跳槽速度为19.8个月,而在BAT企业招聘的职位里,60%以上都在招大数据人才。
大数据工程师年薪非常可观。
人才紧缺带来最直观现象就是薪酬的提升。
目前,一个大数据工程师的月薪轻松过万,一个有几年工作经验的数据分析师,薪酬在40万~60万元之间,而更顶尖的大数据技术人才则是年薪轻松超百万。
猎聘APP里搜索关键词“大数据"很多企业对大数据人才开出的薪资十分诱人。
有的时候成功就是这样,方向和平台选择对了,只要付出足够的汗水,选择大于努力。
为什么从业人员这么少?
大数据做为新科技新技术,本身发展时间也没多久。
大数据技术门槛是非常大,从理论理解架构,实践认识技术,完成企业级项目,才能算真正出师。
门槛高,是困难,也是一个巨大的机会,因为当别人还在犹豫时,起步早的人已经占据了先机。再加上的后天的努力,总会取得好的收获。特别是 Java 工程师转型大数据还是非常建议的,前景与薪资都是巨大的优势。
1、Hadoop开发工程师
Hadoop是一个分布式文件系统(Hadoop Distributed File System),简称HDFS。Hadoop是一个能够对大量数据进行分布式处理的软件框架, 以一种可靠、高效、可伸缩的方式进行数据处理。所以说Hadoop解决了大数据如何存储的问题,因而在大数据培训机构中是必须学习的课程。
2、数据分析师
数据分析师是数据师的一种,指的是不同行业中,专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员。在工作中通过运用工具,提取、分析、呈现数据,实现数据的商业意义。
作为一名数据分析师、至少需要熟练SPSS、STATISTIC、Eviews、SAS、大数据魔镜等数据分析软件中的一门,至少能用Acess等进行数据库开发,至少掌握一门数学软件如matalab、mathmatics进行新模型的构建,至少掌握一门编程语言。总之,一个优秀的数据分析师,应该业务、管理、分析、工具、设计都不落下。
3、数据挖掘工程师
做数据挖掘要从海量数据中发现规律,这就需要一定的数学知识,最基本的比如线性代数、高等代数、凸优化、概率论等。
经常会用到的语言包括Python、Java、C或者C++,我自己用Python或者Java比较多。有时用MapReduce写程序,再用Hadoop或者Hyp来处理数据,如果用Python的话会和Spark相结合。
4、大数据可视化工程师
随着大数据在人们工作及日常生活中的应用,大数据可视化也改变着人类的对信息的阅读和理解方式。从百度迁徙到谷歌流感趋势,再到阿里云推出县域经济可视化产品,大数据技术和大数据可视化都是幕后的英雄。
大数据可视化工程师岗位职责:1、 依据产品业务功能,设计符合需求的可视化方案。2、 依据可视化场景不同及性能要求,选择合适的可视化技术。3、 依据方案和技术选型制作可视化样例。4、 配合视觉设计人员完善可视化样例。5、 配合前端开发人员将样例组件化。
大家能从事的工作岗位并不只是上面的这几个,还有很多细分岗位小编就不一一列举了。想要在工作中立于不败之地还是需要大家不断给自己充电的。
二、发展建议
你适合从事数据分析吗?近年来,越来越多的人选择大数据行业,只看到了大数据行业前景不错、薪资待遇不错,而且培训项目、机构众多,各大名企对于大数据人才的需求也不断上涨。
但是没有对岗位和自身进行合理评估,求职或者入职之后或许才发现其实跟自己想的也许不一样。在入行数据分析或者任何一行之前,你都要好好思考这些问题:我希望进入哪些行业呢?这行业有前景吗?需要什么样的知识结构?符合我的兴趣方向吗?
1、职业爱好:分析需求、写代码、与人沟通、探索未知是你喜欢的吗?
2、思考能力:如何根据数据推演、分析、提出解决方案,这常常需要你脑洞大开。
3、学习能力:数据分析与IT行业一样,是需要持续保持学习状态的,这你能坚持么。
4、沟通合作能力:数据分析师需要与业务部门、研发部门等频繁沟通和合作,这你擅长么。
5、性格:动要能沟通、吵架,静要能分析写代码,这随意切换可以么?
三、行业机会与威胁分析
1、行业情况:毋庸置疑,大数据是21世纪很火热的行业之一,已经渗透到每一个行业和业务职能领域。
2、企业情况:这家企业重视数据吗?有数据基础么?数据有所为么?
3、岗位就业情况:只要你练好真本事,数据分析相关职业是个高薪职业,而且人才缺口较大。
4、岗位要求:需要发现问题、分析问题、解决问题的能力,你需要懂商业、提取处理分析数据、提出解决方案,最终目标是创收。
最后我们来看看,初学者该如何制定大数据学习线路呢
大数据学习路线图——让自己系统学习,知道每一个阶段的学习内容
阶段一、大数据基础——java语言基础方面
核心是,大部分大数据技术都是用Java或Scala编写的。但是别担心,如果你不想用这些语言编写代码,那么你可以选择Python或者R,因为大部分的大数据技术现在都支持Python和R。
(1)Java语言基础
Java开发介绍、熟悉Eclipse开发工具、Java语言基础、Java流程控制、Java字符串、Java数组与类和对象、数字处理类与核心技术、I/O与反射、多线程、Swing程序与集合类
(2)HTML、CSS与JavaScript
PC端网站布局、HTML5 CSS3基础、WebApp页面布局、原生JavaScript交互功能开发、Ajax异步交互、jQuery应用
(3)JavaWeb和数据库
数据库、JavaWeb开发核心、JavaWeb开发内幕
此阶段是针对没有编程基础,或者对基础不扎实的同学一次补习,这个很重要,就像建一座大厦,这就是地基,地基不稳,就算修再高,总有一天会轰然倒塌!
阶段二、Linux&Hadoop生态体系
Linux体系、Hadoop离线计算大纲、分布式数据库Hbase、数据仓库Hive、数据迁移工具Sqoop、Flume分布式日志框架
这章是基础课程,帮大家进入大数据领域打好 Linux基础,以便更好地学习Hadoop、hbase、NoSQL、Spark、Storm、docker、kvm、openstack等众多课程。因为企业中无一例外的是使用 Linux来搭建或部署项目。
Hadoop生态系统的课程,对HDFS体系结构和shell以及java操作详细剖析,从知晓原理到开发的项目,让大家打好学习大数据的基础。
详细讲解 Mapreduce,Mapreduce可以说是任何一家大数据公司都会用到的计算框架,也是每个大数据工程师应该熟练掌握的。Hadoop2x集群搭建前面带领大家开发了大量的 MapReduce程序。
阶段三、分布式计算框架和Spark&Strom生态体系
(1)分布式计算框架
Python编程语言、Scala编程语言、Spark大数据处理、Spark—Streaming大数据处理、Spark—Mlib机器学习、Spark—GraphX 图计算、实战一:基于Spark的推荐系统(某一线公司真实项目)、实战二:新浪网(http://www.sina.com.cn)
(2)storm技术架构体系
Storm原理与基础、消息队列kafka、Redis工具、zookeeper详解、实战一:日志告警系统项目、实战二:猜你喜欢推荐系统实战
Spark大数据处理本部分内容全面涵盖了 Spark生态系统的概述及其编程模型,深入内核的研究,。不仅面向项目开发人员,甚至对于研究 Spark的学员,此部分都是非常有学习指引意义的课程
阶段四、大数据项目实战(一线公司真实项目)
数据获取、数据处理、数据分析、数据展现、数据应用
项目练习其实是穿插课程其中的,在讲解大数据理论的同时,将实践知识穿插其中,增加学生对大数据技术的理解和应用。
接下来,你需要熟悉云端工作。 这是因为如果你没有在云端处理大数据,没有人会认真对待。 请尝试在AWS,softlayer或任何其他云端供应商上练习小型数据集。 他们大多数都有一个免费的层次,让学生练习。如果你想的话,你可以暂时跳过此步骤,但请务必在进行任何面试之前在云端工作。
接下来,你需要了解一个分布式文件系统。最流行的分布式文件系统就是Hadoop分布式文件系统。在这个阶段你还可以学习一些你发现与你所在领域相关的NoSQL数据库。
阶段五、大数据分析 —AI(人工智能)
Data Analyze工作环境准备&数据分析基础、数据可视化、Python机器学习
1、Python机器学习2、图像识别&神经网络、自然语言处理&社交网络处理、实战项目:户外设备识别分析
此阶段是深入提升阶段,为学生想转行人工智能打下良好的基础,多重技能,更能大大提升就业质量。
在不久的将来,时代一定会彻底走入我们的生活,有兴趣入行未来前沿产业的朋友,可以收藏时代,及时获取人工智能、大数据、云计算和物联网的前沿资讯和基础知识,让我们一起携手,引领人工智能的未来!