变分法用于求泛函的极值。泛函取极值的必要条件是一阶变分。一下介绍如何求解泛函的一阶变分。
首先介绍 \mathrm{G\hat{a}teaux} 微分(加托微分)。
\bullet 对于单变量函数,加托微分的定义为,
\begin{equation} \delta f(x ; h) \equiv \lim _{\varepsilon \rightarrow 0} \frac{f(x+\varepsilon h)-f(x)}{\varepsilon}=\left.\dfrac{\mathrm{d}f}{\mathrm{d} x} h\right. \end{equation}
称为函数 f 在 x 处对应于增量 h 的微分。
\bullet 同理对于多变量函数,有,
\begin{equation} \delta f(\boldsymbol x ; \boldsymbol h) \equiv \lim _{\varepsilon \rightarrow 0} \frac{f(\boldsymbol x+\varepsilon \boldsymbol h)-f(\boldsymbol x)}{\varepsilon}=\nabla f(\boldsymbol x) \cdot\boldsymbol h \end{equation}
称为函数 f 在 \boldsymbol x 处对应于增量 \boldsymbol h 的微分。
\bullet 对于泛函的加托微分,有
\begin{equation} \delta \Pi[u(x) ; \eta(x)] \equiv \lim _{\varepsilon \rightarrow 0} \frac{\Pi[u(x)+\varepsilon \eta(x)]-\Pi[u(x)]}{\varepsilon} \end{equation}
称为泛函 \Pi 在 u 处对应于增量 \eta 的一阶变分。
对于如下的积分泛函,
\begin{equation} J[y]=\int_a^b f\left(x, y, y^{\prime}\right) \mathrm{d} x \end{equation}
按照定义式计算,
\begin{equation} J(\varepsilon) \equiv J[\hat{y}+\varepsilon\eta]=\int_a^b f\left(x, \hat{y}+\varepsilon \eta, \hat{y}^{\prime}+\varepsilon \eta^{\prime}\right) \mathrm{d} x \end{equation}
计算全变分为,
\begin{equation} \begin{aligned} \Delta J &=J(\varepsilon)-J(0)\\ &=\int_a^b f\left(x, \hat{y}+\varepsilon \eta, \hat{y}^{\prime}+\varepsilon \eta^{\prime}\right) \mathrm{d} x-\int_a^b f\left(x, \hat{y}, \hat{y}^{\prime}\right) \mathrm{d} x \\ &=\int_a^b\left[f\left(x, \hat{y}+\varepsilon \eta, \hat{y}^{\prime}+\varepsilon \eta^{\prime}\right)-f\left(x, \hat{y}, \hat{y}^{\prime}\right)\right] \mathrm{d} x\\ &=\delta J +\dfrac{1}{2}\delta^2J+O(\varepsilon^3) \end{aligned} \end{equation}
式中一阶变分为,
\begin{equation} \begin{aligned} \delta J &=\left.\frac{\mathrm{d} J( \varepsilon)}{\mathrm{d} \varepsilon}\right|_{ \varepsilon=0} \varepsilon \\ &= \varepsilon \ \boxed{\int_a^b\left[f_y\left(x, \hat{y}, \hat{y}^{\prime}\right) \eta+f_{y^{\prime}}\left(x, \hat{y}, \hat{y}^{\prime}\right) \eta^{\prime}\right] \mathrm{d} x} \end{aligned} \end{equation}
结果可以与求导去进行类似。
系统的总势能表达式为,
\begin{equation} \begin{aligned} \Pi(\boldsymbol{u}) &=\frac{1}{2} \int_{\Omega} \sigma_{i j} \varepsilon_{i j} \mathrm{~d} \Omega-\int_{\Omega} b_i u_i \mathrm{~d} \Omega-\int_{\Gamma_t} t_i^0 u_i \mathrm{~d} \Gamma \\ &=\frac{1}{2} \int_{\Omega} L_{i j k l} u_{i, j} u_{k, l} \mathrm{~d} \Omega-\int_{\Omega} b_i u_i \mathrm{~d} \Omega-\int_{\Gamma_t} t_i^0 u_i \mathrm{~d} \Gamma \end{aligned} \end{equation}
则可计算势能的一阶变分为,
\begin{equation} \begin{aligned} \delta \Pi &=\int_{\Omega} \sigma_{i j}^* \delta u_{i, j} \mathrm{~d} \Omega-\int_{\Omega} b_i \delta u_i \mathrm{~d} \Omega-\int_{\Gamma_t} t_i^0 \delta u_i \mathrm{~d} \Gamma \\ &=\int_{\Omega}\left(\left(\sigma_{i j}^* \delta u_i\right)_{, j}-\sigma_{i j, j}^* \delta u_i\right) \mathrm{d} \Omega-\int_{\Omega} b_i \delta u_i \mathrm{~d} \Omega-\int_{\Gamma_t} t_i^0 \delta u_i \mathrm{~d} \Gamma \\ &=\int_{\Gamma} \sigma_{i j}^* n_j \delta u_i \mathrm{~d} \Gamma-\int_{\Omega}\left(\sigma_{i j, j}^*+b_i\right) \delta u_i \mathrm{~d} \Omega-\int_{\Gamma_t} t_i^0 \delta u_i \mathrm{~d} \Gamma \\ &=\int_{\Gamma_t}\left(\sigma_{i j}^* n_j-t_i^0\right) \delta u_i \mathrm{~d} \Gamma-\int_{\Omega}\left(\sigma_{i j, j}^*+b_i\right) \delta u_i \mathrm{~d} \Omega+\int_{\Gamma_u} \sigma_{i j}^* n_j \delta u_i \mathrm{~d} \Gamma=0 \end{aligned} \end{equation}
下一篇:如何获取生命的能量