疯狂的H100
巴比特资讯
2023-09-05 13:15:39
0

原标题:疯狂的H100

原创:王一川

来源:硅基研习社

2023年8月3日,华尔街和硅谷联袂奉上了一件震撼业界的大事:让一家创业公司拿到23亿美元的债务融资,抵押物则是当前全球最硬的通货——H100显卡。

这个大事件的主角叫做CoreWeave,主营业务是AI私有云服务,简单说就是通过搭建拥有大量GPU算力的数据中心,来给AI创业公司和大型商业客户提供算力基础设施。CoreWeave累计融资5.8亿美金,目前是B轮,估值20亿美元。

CoreWeave成立于2016年,创始人是三个华尔街大宗商品交易员。刚开始公司的主营业务只有一个:挖矿,采购大量GPU来组建矿机中心,尤其是在币圈低潮时,公司会逆周期囤大量显卡,也因此跟英伟达建立了铁杆的革命友谊。

CoreWeave三位联合创始人

2019年,CoreWeave开始把这些矿机改造成企业级数据中心,向客户提供AI云服务,刚开始的生意也不温不火,但ChatGPT诞生之后,大模型的训练和推理每天都在消耗大量算力,已经拥有数万张显卡(当然未必是最新型号)的CoreWeave嗖的一下起飞,门口挤满了客户和风投。

但令人感到蹊跷的是:CoreWeave累计一共只融到了5.8亿美金,账面GPU的净值不会超过10亿美元,甚至公司整体估值也只有20亿美元,但为何却能通过抵押借到23亿美元呢?一向精于算计、热衷对抵押物价值膝盖斩的华尔街,为何如此慷慨呢?

原因极有可能是:CoreWeave虽然账上还没这么多显卡,但它拿到了英伟达的供货承诺,尤其是H100。

CoreWeave跟英伟达的铁杆关系已经是硅谷公开的秘密。这种铁杆根源于CoreWeave对英伟达的毫无二心的忠诚和支持——只用英伟达的卡、坚决不自己造芯、显卡卖不动时帮英伟达囤卡。对黄仁勋来说,这种关系的含金量,远超跟微软、Google和特斯拉的那些塑料友情。

因此,尽管英伟达H100十分紧缺,英伟达还是把大量新卡分配给了CoreWeave,甚至不惜限制对亚马逊和谷歌等大厂的供应。黄仁勋在电话会议里夸赞:“一批新的GPU云服务提供商会崛起,其中最著名的是 CoreWeave,他们做得非常好。”

而在喜提23亿美金的一周前,CoreWeave就已对外宣称,将耗资16亿美元在德州建立一个占地面积42,000 平方米的数据中心。仅凭借跟英伟达之间的关系和优先配货权,CoreWeave就可以把建数据中心的钱从银行里借出来——这种模式,让人想起了拿地后立马找银行贷款的地产商。

所以可以这样说:当下一份H100的供货承诺,堪比房地产黄金时代的一纸土地批文。

一卡难求的H100

今年4月在接受采访时,马斯克抱怨道[2]:“现在似乎连狗都在买GPU。”

很讽刺的是,特斯拉早在2021年就发布了自研的D1芯片,由台积电代工,采用7nm工艺,号称能替代当时英伟达主流的A100。但2年过去了,英伟达推出了更为强大的H100,而特斯拉的D1没有后续迭代,因此当马斯克试图组建自家的人工智能公司时,还是得乖乖地跪在黄老爷门前求卡。

H100在去年9月20日正式推出,由台积电4N工艺代工。相较于前任A100,H100单卡在推理速度上提升3.5倍,在训练速度上提升2.3倍;如果用服务器集群运算的方式,训练速度更是能提高到9倍,原本一个星期的工作量,现在只需要20个小时。

GH100 架构图

相比A100,H100的单卡价格更贵,大约是A100的1.5~2倍左右,但训练大模型的效率却提升了200%,这样这算下来的“单美元性能”更高。如果搭配英伟达最新的高速连接系统方案,每美元的GPU性能可能要高出 4-5 倍,因此受到客户疯狂追捧。

抢购H100的客户,主要分成三类:

第一类是综合型云计算巨头,比如微软Azure、谷歌GCP和亚马逊AWS这样的云计算巨头。他们的特点是财大气粗,动辄就想“包圆”英伟达的产能,但每家也都藏着小心思,对英伟达的近垄断地位感到不满,暗地里自己研发芯片来降低成本。

第二类是独立的云GPU服务商,典型公司如前文提到的CoreWeave,以及Lambda、RunPod等。这类公司算力规模相对较小,但能够提供差异化的服务,而英伟达对这类公司也是大力扶持,甚至直接出钱投资了CoreWeave和Lambda,目的很明确:给那些私自造芯的巨头们上眼药。

第三类是自己在训练LLM(大语言模型)的大小公司。既包括Anthropic、Inflection、Midjourney这种初创公司,也有像苹果、特斯拉、Meta这样的科技巨头。它们通常一边使用外部云服务商的算力,一边自己采购GPU来自建炉灶——有钱的多买,没钱的少买,主打一个丰俭由人。

在这三类客户中,微软Azure至少有5万张H100,谷歌手上大概有3万张,Oracle大概有2万张左右,而特斯拉和亚马逊手上也至少拿有1万张左右,CoreWeave据称有3.5万张的额度承诺(实际到货大概1万)。其他的公司很少有超过1万张的。

这三类客户总共需要多少张H100呢?根据海外机构GPU Utils的预测,H100当前需求大概43.2万张。其中OpenAI需要5万张来训练GPT-5,Inflection需求2.2万张,Meta则是2.5万张(也有说法是10万张),四大公有云厂商每家都需要至少3万张,私有云行业则是10万张,而其他的小模型厂商也有10万张的需求[3]。

英伟达2023年的H100出货量大概在50万张左右,目前台积电的产能仍在爬坡,到年底H100一卡难求的困境便会缓解。

但长期来看,H100的供需缺口会随着AIGC的应用爆发而继续水涨船高。根据金融时报的报道,2024年H100的出货量将高达150万张-200万张,相比于今年的50万张,提升3-4倍[4]。

而华尔街的预测则更为激进:美国投行Piper Sandler认为明年英伟达在数据中心上的营收将超过600亿美元(FY24Q2:103.2亿美元),按这个数据倒推,A+H卡的出货量接近300万张。

还有更夸张的估计。某H100服务器最大的代工厂(市占率70%-80%),从今年6月开始就陆续出货了H100的服务器,7月份产能陆续爬坡。一份最近的调研显示,这家代工厂认为2024年A+H卡的出货量会在450万张~500万张之间。

这对英伟达意味着“泼天的富贵”,因为H100的暴利程度,是其他行业人难以想象的。

比黄金更贵的显卡

为了搞清H100有多暴利,我们不妨把它的物料成本(Bill of Materials, BOM)彻底拆解出来。

如图所示,H100最通用的版本H100 SXM采用的是台积电CoWoS的7晶粒封装,6颗16G的HBM3芯片分列两排紧紧围绕着中间的逻辑芯片。

而这也构成了H100最重要的三个部分:逻辑芯片、HBM存储芯片、CoWoS封装,除此之外,还有诸如PCB板以及其他的一些辅助器件,但价值量不高。

H100拆机图

核心的逻辑芯片尺寸是814mm^2,产自台积电最先进的台南18号工厂,使用的工艺节点则是“4N”,虽然名字上是4打头,但实际上是5nm+。由于5nm的下游,手机等领域的景气度不佳,因此台积电在保供逻辑芯片上没有任何问题。

而这块逻辑芯片是由12寸(面积70,695mm^2)的晶圆切割产生,理想状态下可以切出86块,但考虑到“4N”线80%的良率以及切割损耗,最后一张12寸晶圆只能切出65块的核心逻辑芯片。

这一块核心逻辑芯片的成本是多少呢?台积电2023年一片12寸的晶圆对外报价是13,400美元,所以折算下来单块大概在200美元左右。

接下来是6颗HBM3芯片,目前由SK海力士独供,这家起源于现代电子的企业,2002年几乎要委身与美光,凭借着政府的输血以及逆周期上产能的战略,如今在HBM的量产技术上至少领先美光3年(美光卡在HBM2e,海力士2020年中期量产)。

HBM的具体价格,各家都讳莫如深,但根据韩媒的说法,HBM目前是现有DRAM产品的5-6倍。而现有的GDDR6 VRAM的价格大概是每GB3美元,如此推算HBM的价格是在每GB 15美元左右。那一张H100 SXM在HBM上的花费就是1500美元。

虽然今年HBM的价格不断上涨,英伟达、Meta的高管也亲赴海力士“督工”,可下半年三星的HBM3就能逐步量产出货,再加上韩国双雄祖传的扩张血脉,想必到了明年HBM就不再是瓶颈。

而真正是瓶颈的则是台积电的CoWoS封装,这是一种2.5D的封装工艺。相比于直接在芯片上打孔(TSV)、布线(RDL)的3D封装,CoWoS可以提供更好的成本、散热以及吞吐带宽,前两者对应HBM,后两者则是GPU的关键。

所以想要高存力、高算力的芯片,CoWoS就是封装上的唯一解。英伟达、AMD两家的四款GPU都用上了CoWoS就是最好的佐证。

CoWoS的成本是多少呢?台积电22年财报披露了CoWoS工艺占总营收7%,于是海外分析师Robert Castellano根据产能,以及裸晶的尺寸推算出封装一块AI芯片能给台积电带来723美元的营收[6]。

因此把上述最大的三块成本项加总,合计在2,500美元左右,其中台积电占了$1,000(逻辑芯片+CoWoS)左右,SK海力士占了1500美金(未来三星肯定会染指),再算上PCB等其他材料,整体物料成本不超过3000美金。

那H100卖多少钱呢?35000美金,直接加了一个零,毛利率超过90%。过去10年英伟达毛利率大概在60%上下,现在受高毛利的A100/A800/H100的拉动,今年Q2英伟达的毛利率已经站上了70%。

这有点反常识:英伟达严重依赖台积电的代工,后者地位无人撼动,甚至是唯一能卡英伟达脖子的核心环节。但这么一块3.5万美金的卡,制造它的台积电只能拿1000美金,而且只是收入,不是利润。

不过,用毛利率来定义暴利,对于芯片公司意义不大,要是从沙子开始算,那毛利率更高。一张4N工艺的12寸晶圆,台积电卖给谁都差不多是1.5万美金一片,英伟达能加个零卖给客户,自然有其诀窍。

这个诀窍的秘密在于:英伟达本质上,是一个伪装成硬件厂商的软件公司。

软硬一体的护城河

英伟达最强大的武器,就藏在毛利率减去净利率的那一部分。

在本轮AI热潮之前,英伟达的毛利率常年维持在65%上下,而净利率通常只有30%。而今年Q2受高毛利的A100/A800/H100的拉动,毛利率站上70%,净利率更是高达45.81%。

近 3 财年英伟达(NVIDIA)单季度毛利率与净利率

英伟达目前在全球有超过2万名员工,大都是高薪的软硬件工程师,而根据美国猎聘Glassdoor的数据,这些岗位的平均年薪基本都高于20万美元/年。

近十个财年英伟达研发费用率

在过去的十年里,英伟达研发支出的绝对值保持着高速增长,而研发费用率稳态下也维持在20%以上。当然,如果某一年的终端需求爆发,比如2017年的深度学习、21年的挖矿、以及今年的大语言模型,营收的分母骤然抬升,研发费用率就会短暂的跌倒20%,相应地利润也会非线性暴增。

而在英伟达研发的这么多项目中最关键的无疑是CUDA。

03年为解决DirectX编程门槛过高的问题,Ian Buck的团队推出了一款名为Brook的编程模型,这也是后来人们常说的CUDA的雏形。06年Buck加入英伟达,并说服黄仁勋研发CUDA[8]。

因为支持C语言环境下的并行计算,使得CUDA一跃成为工程师的首选,也让GPU走上了通用处理器(GPGPU)的道路。

在CUDA逐渐成熟之后,Buck再次劝说黄仁勋,让英伟达未来所有的GPU都必须支持CUDA。06年CUDA立项,07年推出产品,当时英伟达的年营收仅有30亿美元,却在CUDA上花费5亿美金,到了17年时,单在CUDA上的研发支出就已超过了百亿。

曾经有位私有云公司的CEO在接受采访时说过,他们也不是没想过转去买AMD的卡,但要把这些卡调试到正常运转至少需要两个月的时间[3]。而为了缩短这两个月,英伟达投入上百亿走了20年。

芯片行业浮沉大半个世纪,从来没有一家企业像英伟达一样,既卖硬件、也卖生态,或者按黄仁勋的话来说:“卖的是准系统”。因此,英伟达对标的也的确不是芯片领域的那些先贤们,而是苹果——另一家卖系统的公司。

从07年推出CUDA,到成为全球最大的印钞厂,英伟达也并不是没有过对手。

08年当时芯片届王者英特尔中断了与英伟达在集显项目上的合作,推出自己的通用处理器(GPCPU),打算在PC 领域“划江而治”。可英伟达在随后几年的产品迭代中,硬是把自家处理器推广到太空、金融、生物医疗等需要更强大计算能力的领域,于是10年英特尔眼看打压无望,被迫取消了独立显卡计划。

09年苹果的开发团队推出了OpenCL,希望能凭借着通用性在CUDA身上分一杯羹。但OpenCL在深度学习的生态上远不如CUDA,许多学习框架要么是在CUDA发布之后,才会去支持OpenCL,要么压根不支持OpenCL。于是在深度学习上的掉队,使得OpenCL始终无法触及更高附加值的业务。

15年AlphaGo开始在围棋领域初露锋芒,宣告人工智能的时代已经来临。此时的英特尔为了赶上这最后一班车,把AMD的GPU装入自己的系统芯片内。这可是两家公司自上世纪80年代以来的首次合作。可如今CPU老大、老二+GPU老二的市值之和仅是GPU老大英伟达的1/4。

从目前看来,英伟达的护城河几乎是牢不可摧。即使有不少大客户笑里藏刀,私下里在研发自己的GPU,但凭借着庞大的生态和快速的迭代,这些大客户也无法撬动帝国的裂缝,特斯拉就是明证。英伟达的印钞机生意,在可见的未来还会持续。

可能唯一让黄仁勋萦绕乌云的地方,便是那个客户众多、需求旺盛但H100卖不进去、但人家又在咬牙攻坚的地方——这个地方全世界只有一个。

参考资料

[1] Crunchbase

[2] 'Everyone and Their Dog is Buying GPUs,' Musk Says as AI Startup Details Emerge-tom's HARDWARE

[3] Nvidia H100 GPUs: Supply and Demand-GPU Utils

[4] Supply chain shortages delay tech sector’s AI bonanza,FT

[5] AI Capacity Constraints - CoWoS and HBM Supply Chain-DYLAN PATEL, MYRON XIE, AND GERALD WONG,Semianalysis

[6] Taiwan Semiconductor: Significantly Undervalued As Chip And Package Supplier To Nvidia-Robert Castellano,Seeking Alpha

[7] 芯片战争,余盛

[8] What is CUDA? Parallel programming for GPUs-Martin Heller,InfoWorld

[9] NVIDIA DGX H100 User Guide

相关内容

热门资讯

亚马逊电话会:2000亿开支吓... 在刚刚结束的2025年第四季度财报电话会上,尽管,但市场被一个数字吓懵了——2026年预计约2000...
原创 英... 2月5日,媒体证实英皇娱乐把酒店大堂的标志“黄金大道”里的全部金砖给出售掉了。 英皇娱乐酒店的大股...
董明珠接受人民日报专访:现在的... 今天,《人民日报》8版刊发专访董明珠文章—— 做制造业,要一个一个螺丝钉去打造 ——珠海格力电器股份...
紫金矿业集团股份有限公司关于 ... 证券代码:601899 证券简称:紫金矿业 编号:临2026-011 紫金矿业集团股份有限公司关于 ...
4500平方米!国家动漫园联合... 天津北方网讯:2月4日,由国家动漫园联合启迪之星(天津·生态城)共同打造的创研大厦企业孵化空间正式揭...
别让老人独自出门 阿尔茨海默病... 阿尔茨海默病作为一种神经退行性变化,其核心影响远不止于记忆力的减退。它系统地重塑了大脑处理空间与时间...
原创 8... 零食行业的IPO浪潮,已经接近尾声。 消费者喜好变化催生出的巨头,护城河很宽但并不深,从长期来看,零...
世界首富马斯克称36个月内太空... 北京时间周五凌晨,马斯克作客知名科技访谈播客Dwarkesh Podcast的节目上线。作为全球资本...
原创 大... 50岁的老张晨起上厕所的时候,突然感到剧烈的胸痛,家人发现他面色苍白,全身大汗淋漓,急忙将其送到医院...
日韩股市低开后直线下挫,日经2... 记者|黄胜 编辑|金冥羽杜波 校对|许绍航 2月6日,日韩股市低开,开盘后直线下挫。截至发稿,日经2...
刚刚!一位上市公司董秘出任券商... 来源:企业上市 第一创业证券股份有限公司(以下简称 “公司”)于 2026 年 2 月 5 日召开第...
生成式人工智能用户规模超6亿人 我国互联网普及率逾80% 生成式人工智能用户规模超6亿人 2025年5月4日,人们在浙江省杭州市...
每日债市速递 | 央行公开市场... // 债市综述 // 1. 公开市场操作 央行公告称,2月4日以固定利率、数量招标方式开展了750亿...
黄金回收、“以旧换新”业务量大... 最近一段时间,金价在创下历史新高后经历剧烈震荡,这也带动国内贵金属市场甚至首饰金跟着剧烈震荡,不少人...
原创 股... 股票退市并非“一退到底”,部分公司仍有重新上市的可能。 但再上市门槛极高,且能否申请、需满足哪些条件...
原创 曾... 城市的崛起与发展,往往不是偶然的,它背后有着多重因素的交织与推动。有的是地理条件的得天独厚,有的是自...
霉豆腐火了,跟风自制的“霉豆腐... 近日,“街头卖霉豆腐”的视频在网络上走红,冲上热搜。 社交平台上掀起了复刻“霉豆腐”风潮,不少人选择...
豪掷7.17亿美元!美团收购叮... 美团以约7.17亿美元对价,收购叮咚买菜中国业务。 2月5日,美团于香港联交所发布公告,将以约7.1...